
Dialogues on Natural Code
Lu Wilson
TodePond

London, United Kingdom
todepond@gmail.com

David H. Ackley
Living Computation Foundation

Placitas, New Mexico, USA
ackley@livingcomputation.org

Figure 1. The SelfImage starburst.

Abstract
This essay, based on a series of discussions between the au-
thors, is a loosely edited collage in which we work to flesh
out our shared interests in non-traditional machines and
coding mechanisms. We primarily focused on the idea that
all human language can usefully be viewed in programming
language terms — as “natural code”. Programming languages
and natural languages differ in many ways, such as hav-
ing relatively formal definitions versus not, emphasizing
strong syntax versus large dictionaries, and demanding rigid
implementations versus building on the vagaries of living
systems. Still, we saw deep unities as well, much more than
mere metaphor, and we glimpsed the possibility of applying
humanity’s decades of programming language design and
software engineering experience to the task of debugging
and refactoring the natural codebase that we all share. These
fragmentary and overlapping dialogues represent both a de-
scription and an example of natural code, and we offer them

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in
Proceedings of the 2024 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software (Onward! ’24),
October 23–25, 2024, Pasadena, CA, USA, https://doi.org/10.1145/3689492.
3689807.

here, with a simple “natural API” illustration, in hopes of
programming people to join in natural code development.

CCS Concepts: • Software and its engineering → Very
high level languages; • Computing methodologies → Dis-
tributed computing methodologies.

Keywords: Natural Code, Human Computation, Robust API
Design, Implementability
ACM Reference Format:
Lu Wilson and David H. Ackley. 2024. Dialogues on Natural Code.
In Proceedings of the 2024 ACM SIGPLAN International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and
Software (Onward! ’24), October 23–25, 2024, Pasadena, CA, USA.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3689492.
3689807

1 Being Machinery
DAVE: I think living organisms can be meaningfully viewed
as machines.
LU: Sorry, what?
DAVE: They’re physical arrangements of matter that move
and do work. They have power supplies. Living systems are
machines.
LU: Including us?
DAVE: Including us. We’re machines.
LU: Really? I don’t feel like a machine.

https://orcid.org/0009-0009-0142-1441
https://orcid.org/0009-0001-1751-1857
https://doi.org/10.1145/3689492.3689807
https://doi.org/10.1145/3689492.3689807
https://doi.org/10.1145/3689492.3689807
https://doi.org/10.1145/3689492.3689807


Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Lu Wilson and David H. Ackley

DAVE: I mean, people usually think of machinery as metal
and screws and batteries, and I have very few of those in my
actual living body.
LU: A non-zero amount?
DAVE: I want to take machines way beyond metal and
screws, and say: Any time matter is arranged in space, and
an energy supply is incorporated so that the arrangement
of matter and energy can do something — that’s what we’re
talking about as a machine. And that description is as true
for screws and metal as it is for people and amoebas.
LU: I don’t know if I want to think of myself as a machine
though.
DAVE: It can be uncomfortable, but whenwe go to the doctor,
say, we want them to be talking about us in mechanistic
ways, like “the heart machine is not working as well as

it could” or whatever. This framing of a living system as
a machine can be useful when we’re trying to understand
how it works, and how to make it work better.

1.1 Building Machinery

LU:Aswell as beingmachinery, living things are also capable
of building machinery. That’s what you’re saying, right?
DAVE: That’s right. Machines that somehow work to pre-
serve their structures, their patterns, are what we call “life”.
Persistence involves maintenance and repair, but also build-
ing copies.
LU: I guess so! Though I was thinking more about traditional
ideas of “building machinery”, like a beaver building a dam,
or a wasp building a nest.
DAVE: That happens too. And humans build bridges, rock-
ets, and programmable computers. I think about “building
machinery” writ large. It can be something like lighting a fire,
or folding a paper airplane, or moving a rock off a path.
LU: You’re using the phrase “building machinery” extremely
loosely here, right? Because to me, “building machinery”
sounds like creating something, or making an artifact of
some sort. But you’re using it to refer to what seems like
just an action, or a process.
“Lighting a fire” doesn’t sound like building anything

at all. It just sounds like enacting a change.
DAVE: Yeah I screwed that up. Collecting wood and stuff is
building the machine. Lighting the fire is flipping its switch.
But, say you’re working at a hamburger joint, where all

you have to do is slap a burger on a bun and put on ketchup
or mayo, and it’s done. You’re “building a machine” out of
other complex arrangements of matter.
LU: You’re changing the arrangement of the burger’s ingre-
dients, and that’s what you’re calling “building machinery”.
It’s not that you’ve “created” these ingredients, but you’ve
built them into a particular pattern.
DAVE: Yes, you’re arranging matter to get certain properties.

LU: Okay so you said that a burger is a machine and —
DAVE: The reviewers had some troubles with that.
LU: And I can understand their troubles. You said that a
machine can do something, but a burger just sits there.
DAVE: I — Fair enough. I understand. I mean, there are many
power sources for machines. You could have a battery, or
gasoline, or gunpowder. But you could also have a human.
LU: A human?
DAVE: Like, an old-fashioned well pump is a hand-powered
machine. You pump the handle, and water comes up out of
the spout and helps you live. It’s a human-powered machine.

And maybe a hamburger isn’t the cleanest example —
LU: It really isn’t the cleanest example.
DAVE: — but the hamburger machine runs on muscle power
too. You pick it up and chomp it on down, and it absolutely
does something: It feeds you and helps you live.

LU: You’re stretching the use of the language quite a bit, but
what you’re saying is — when you’re building machinery,
you’re building a pattern.
I could have some LEGO bricks on my table, and they’re

all scattered around. I could build something new just by
moving them around. I could build a pattern, or a house.
Either way, I’m building machinery just by rearranging. Is
that how you see it?
DAVE: Right. Arranging matter. A house is a pattern too.

1.2 Contracting Machinery

LU: And you’re saying there are two ways of building ma-
chinery? One way is to do it yourself, to build it directly.
DAVE:Wood, hammer, nail. Yeah.
LU: And the other way is by getting another machine to do
the work for you. You can instruct it to do the building on
your behalf. In this case, you’re building indirectly.
DAVE: Yes, you find a programmable machine that’s out
there in the world already. You don’t have to build it yourself.
You ship some code, and have that machine do the work for
you. When you don’t have to send the wood or the tools,
code is incredibly cheap to ship. That’s its superpower.
LU: And that programmable machine could be anything we
can transmit code to, like a mechanical arm in a factory, or a
rocket, or a computer.
DAVE: Or we flip the switch on the wall. We want light.
LU: Okay, I see where this is going.



Dialogues on Natural Code Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

1.3 Human Hardware

LU: You’re saying that “the programmable machine could be

a person”.
DAVE: Right. As humans, we can transmit code to another
person and get them to do something for us. We can say,
“Hey, can you help me build this shelter?” or “Can you

build a fire while I gather food?”.
LU: I’d argue that animals do that too, right? Living things
often communicate with each other in some sort of way.
DAVE: It’s certainly a spectrum. Maybe an animal sends a
signal that means “run” or “danger” or “food”.
LU: Either way, you’re saying that we can code one another.
Asking someone to do something is coding them, in a way?
DAVE: Yes, we transmit “natural code” all the time — when
we talk with each other, or teach stuff to our kids. If I was
trying to wrap it all up in a box, I’d say
I thinkwe should use our knowledge of programming
languages, of software and computing, to examine
our own natural code. To understand it and debug it.
To make society better, and to improve our shared
codebase.

This is why I want to push for a view of computation broad
enough that we can see humans as programmable machines
— that are programmed by “natural code”.

1.4 Coldness and Evil

LU: This idea that people “program” other people. To me it
seems —
DAVE: It seems really obvious, right? It helps us to —
LU: No. Actually, I was going to say that it seems really cold.
DAVE: Oh. Well.
LU: It almost seems psychopathic, because it sounds like it’s
all about trying to manipulate other people.
DAVE:Well, I —
LU: But communication isn’t only for influencing people.
We also talk to share our feelings, and connect with others.
Or we just want to be heard, or rant, or share a joke.
DAVE: Right! And I think that’s a good —
LU: So we can’t boil down communication to just “getting
someone to do stuff” because that’s cold, and it’s not true!

LU: Reviewer C is worried about “the ideological, tech-

nocratic undertones” of the essay, and “it’s a pervasive

fallacy in the tech world to see all our problems as

technological” and “Every human interaction is reduced

to a kind of programming”.
DAVE: Yeah. And how do you react to that?
LU: I was genuinely worried about this when we submitted,
because it’s something I agree with. There is this pervasive

fallacy to see all our problems as technological. I hate it,
and I see it time and time again.
Like recently, I’ve been hearing more and more people

around me saying that “all we need is better technology”
and all our computer accessibility issues will disappear.
DAVE: I just can’t imagine somebody saying that seriously.
LU: For example, I read a recent essay [17] saying that “AI
will soon come to the rescue” for accessibility.

Or take the climate crisis. There’s this fallacy that we don’t
need to worry about reducing our energy usage, or replacing
our energy sources [10] because —
DAVE: “We will technology our way out of it”. Carbon
capture, seeding the clouds, or whatever we can tell ourselves
to delay dealing with the real problems.
LU: Exactly. In these cases, the actual solution is to not see
the problem as mostly technological. Instead, the solution
is to try to change our behavior, both as individuals and
as a society. I think this is where natural code can help. It
can give us a new perspective and understanding of our
communications and how to improve them.

DAVE: One answer to such criticisms is that we are reading
the concept of “technology” broadly enough to include stuff
that’s not traditional technology. People can hear us say
“technology” and think it means traditional programming
languages and computers and “tradtech” generally.
LU: Right, we say “natural code can help us” but sometimes
people hear “traditional technology can help us”.
DAVE: But really we’re saying “technology writ large is

much bigger than tradtech” and part of that is understand-
ing ourselves better — that we can be viewed meaningfully
as machines, and our communications can be viewed as code,
and we build more machines to help keep ourselves alive.
LU: And we exchange code with each other.
DAVE: For sure. We are coders. We ship code.
LU: I mean, it’s a tricky idea to sell. And it does sound quite
“technological”.
DAVE:And I thinkwe just have to own that. Butwe also have
to stress that judgment goes beyond just the tech. Shipping
code “to make money” is different than “to help society”, no
matter how tech hypocrites may try to conflate them.

LU: If anything, I think we are calling for fewer problems to
be seen as solvable by tradtech.
For example, at work, we wanted to make it easier to

hear each other on our video calls. We got new tradtech —
software, microphones — but still had problems.
DAVE: And the real solution was like “talk slower”?
LU: It’s mainly “avoid cross-talk” and “be sure to set up

everything properly”. In that situation, deploying “natural



Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Lu Wilson and David H. Ackley

code” is what improved things. We actually wrote up a doc-
ument — guidelines for behaving in meetings. And for me
this is a form of “natural code”.
DAVE: Like how modern programming projects often have
an explicit “Code of Conduct.” That’s “natural code”!

2 Beyond Determinism
LU: Another obvious objection to these ideas is that humans
seem really different to computer hardware, because comput-
ers are absolutely rigid and repeatable. They’re deterministic,
and humans are not.
DAVE: Deterministic execution of code has always been
an illusion. There’s always the possibility of cosmic rays
coming in and flipping a bit, say, and that does happen some-
times [25]. But we know that we can engineer traditional
computer hardware so that the chance of that is small enough
that we can usually ignore it.
LU: But someone could still come and turn off your com-
puter’s power, right?
DAVE: Right, or overheat it.
LU: Or smash it with a hammer.

LU: In web development, when you do a “fetch” request
to an endpoint, you usually use your own special kind of
“fetch” function that automatically retries a few times [18].
DAVE: Right, because in the network world —
LU: In the network world, things can go wrong, and in fact,
they often do go wrong [16, 19]. So you run the same code
again and again, to increase the chances that it will work.

DAVE: People certainly don’t do the same thing every time.
LU: So when we transmit code to a person, we can’t know
for sure what the effects will be. They might ignore us, or
say no, or do something completely different.

The essay might make no sense to them, or they might get
it but disagree. But even if the chance of convincing them is
low, we might still think that it’s worth a try.
DAVE: Yeah, maybe we’ll succeed. Maybe we won’t. The
machines executing the code of this essay are going to be
way non-deterministic.

DAVE: I’ve been trying to get ideas like natural code across
for a long time [2], and it’s been hard. People bring all of
their traditional computing misconceptions to it. And the
idea of natural code just looks crazy to them.
LU: Has non-determinism been a blocker for some people?
DAVE: Some people would outright say “without determin-

istic execution, it’s not computation.”

DAVE: There’s this idea that “if you can’t predict exactly

what the code will do, it’ll be chaos”. My claim is no,
we can still talk in terms of computation and code, even if
the “computer” is not fully deterministic.
Even if we only have a 51% chance that some code will

work versus a 49% chance that it won’t, say, we might still
want to run the code, again and again, for that 2% edge.

LU: I’ve been thinking about how we can get across this
“non-determinism idea”, and I wonder if we can use the for-
mat of the essay itself to help us dripfeed it throughout.
DAVE: Oh I see, bits of conversation out of order, and so on.
LU: Yes, we don’t need to be strictly chronological. We can
jump around and revisit things. When we transmit natural
code, we don’t know exactly how that code will be executed.
We don’t know what the exact order of execution will be
either, but we can still talk about it in terms of code and
computation. It’s still possible to do that.
DAVE: Perhaps also showing how we can bend the familiar
overall “syntax” of a paper, but still transmit legible code.
LU: Someone could skip ahead to the end of the essay, or
miss out a whole section, or just look at the diagrams.

3 Prior “Art”

LU: But, Dave: Why put this essay forward as a submis-
sion to a programming language conference? Why not go
to a philosophy conference, or “art”? Why enter through
programming languages as a lens?
DAVE: I mean sure, if we had more time and more collabo-
rators, we’d go to all those conferences — a full court press —
and then FOMOwould descend, and the world would change.
LU: “FOMO” as in “Fear Of Missing Out”?
DAVE: Yes, if we could figure out how to —
LU: If we could market this “natural code” idea in all those
conferences, lots of people might get “FOMO” and get involved.
DAVE: And that would be great. But we can only do what
we can figure out how to do — can only do what’s “imple-
mentable” for us at the time.

I do want to poke the bear a bit, and it seems appropriate
for a venue like Onward! Essays that’s explicitly aimed at
computation and programming languages writ large.
LU: Yeah, I see that. I think it’s helpful for you to share why
you’re coming through programming languages, because
people reading this might think there’s a particular reason
behind that. But it sounds like it’s partly just because that’s
where you’re starting from.
DAVE: Right that’s my history. Code’s what I know best.



Dialogues on Natural Code Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

3.1 Historical Traditions

DAVE: It’s like philosophy, psychology, and all those things,
are trying to describe what we are — what our touchstones
and key concepts are, how we see what we see, and so on.
I think, despite their great successes, such fields have deep
assumptions that limit how clear and effective they can be.
I think we should start again with notions of program-

ming languages and software engineering, but move beyond
deterministic execution. Then we can start talking about
our human collective computation in terms of APIs, pro-
gramming languages and structures, compositionality and
modularity, and so on.

The goal is: Whenever we speak, we can always know, or
plausibly believe, that what we are saying is implementable.
We could always, at least in principle, build a machine —
using ordinary silicon chips or exotic biological bricks or
whatever — that could run the code we’re shipping. Then
we point at the machine and say “I mean like that!” And
that’s what we cannot do with philosophy or psychology
or religion or anything, that we maybe could do if we say
“Let’s pretend natural language is code”.

3.2 Implementability

LU: I would challenge the idea that natural code is the only
route to implementability. I think that neuroscience, say, or
even physics, offers implementability in some way.
I know there are studies out there where they’ve taken

an organism, a hydra vulgaris, and they’ve mapped out its
entire neural networks, and they’ve used that to get closer
to determining how the creature is implemented [13].

DAVE: I certainly do not want to say that natural code is the
only route to implementability. I would argue that it looks
like the most direct route to implementability.
Driving around a cockroach by putting wires into its

spine [20] is clearly building a piece of living machinery,
working at a pretty low level. But in the computation world,
instead of writing assembly code, we glue together giant
stacks of software and plug one abstracted part into another.

I would argue that, if neuroscientists build more machines
out of more neurons, displaying more complex behaviors,
they’ll stop talking about that overall machine in terms of
neurons. They’re going to start talking about it in terms of
inputs and outputs, and parallel and sequential processing —
in terms of computation and code.

LU: So you think that it all comes back to computation in
the end?

DAVE: Back to implementation. I find neuroscience and biol-
ogy results inspirational for seeing how nature does things.
Many perspectives help! I argue that natural code is yet
another point of view that can be a useful framing for un-
derstanding our world, and making it better.

3.3 Related Work

LU:Okay, okay. But I don’t think that this “Prior Art” section
actually covers any prior art so far. It feels like a rejection of
everything existing. Natural code can’t be that new, right?
DAVE:Of course, lots of things are connected. DanDennett’s
ideas had a big impact on me personally, for one.
LU: I saw you tooted a little remembrance about him. [5]
DAVE: Yeah, he was so clear. With his notions of descriptive
“stances” [12], I see natural code as a way of connecting the
intentional stance with the physical and design stances.
LU: I’m reminded of Alexander’s pattern language stuff
too [8]. His “patterns” are like code, describing how to solve
various problems through architecture and design. And there’s
an emphasis on the patterns being “tentative” and unpre-
dictable. There is a non-deterministic aspect to it.
DAVE: Right, and of course design patterns [14] have similar
flavors. Language not quite executable on a computer, but
very “code like” and absolutely executable on developers.
LU: For me, these examples demonstrate that we can spot
aspects of natural code within existing works, perhaps im-
plicitly, and what we’re trying to do is—
DAVE:We’re trying to explicitly frame things as code.

3.4 Blending Fields

LU: Personally, I seek out the projects that aim to blend
numerous fields, like those that combine science and art
in some way, or those that try to bring together different
categories of research. It’s not always easy to do, but I think
it’s often where the most impactful work can be done — you
get to pick and choose the strengths of various fields, and
get the “best of both worlds” in many cases.
DAVE: Let me be completely honest. My problem combining
art with science is that the results often feel a bit like the
worst of both. You know, not great science, not great art, no
impact at all. And so I feel that art is too —
LU: You make a few art pieces though.
DAVE:Well —
LU: Yeah, it’s funny hearing you criticize using art, because
from my perspective, you seem to do a lot of art.
DAVE:What? What!?
LU: Yes, I mean, I would —
DAVE: Name one!
LU: The SelfImage. That’s art! (See Fig. 2.)
DAVE: Okay, I see that as computation, I guess.
LU: This is how I see it. I think you’re in this world of trying
to get different fields to put their heads together, and learn
from each other.
DAVE: Yeah.



Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Lu Wilson and David H. Ackley

LU: And maybe you see a divide between the “art world”
and the “non-art world.” But for me, it isn’t helpful to draw
these lines when trying to bring the different fields together.

I accept that you don’t need to openwith art. You can open
with something else and then sucker-punch with art, right?
DAVE: Yes, yes, yes, it’s like “just kidding, it was all a

dream”.
LU: “It was art the whole time”.
DAVE: For the SelfImage in that sense, you are 100% right.
There is an art component to it, and a marketing component
— an attempt to be viral, which I have completely failed at.
LU: Except —
DAVE: Well I mean, everybody wants the next zero on their
views, on their citations, on their patreon, whatever it hap-
pens to be. But I’m still only down at the sort of two to three
zeroes range, so, you know, I can legitimately claim lack of
virality, and — well, anyway, that’s another topic.
LU: Yeah okay, I just think it’s good I got you to admit that
the SelfImage is art.

4 The Nature of Natural Code
DAVE: The canonical Chomsky hierarchy stuff [11] is all
about languages having compositional, recursive, syntactic
structures, allowing language users to create open-ended
complexity. And I think that’s great, but it doesn’t go nearly
far enough. On their own, syntactic properties are almost a
detail. There’s other ways to get modularity, complex repre-
sentations, and so on. For example, you could just list chosen
words in a random order — “wood, hammer, nail” — and
it could create a notion in the listener’s head that could be
quite rich, with hardly any syntax.
LU: Splinters.
DAVE:Right. Sore thumb. So I’m hesitant to embrace the idea
that it’s all about language and which structural properties of
language are important. I think that’s wrong. Instead, I want
to talk about “code”, and not “programming language”. And
by saying code, I want to rope in signals, gestures, grunts —
stuff that seems below the level of programming languages.

4.1 Starting From Signals

LU: Okay, “code” “code” “code”. Not just language. I think
that’s right. You can get too focused on the structure and
syntax of language. I think it’s more important to think about
the purpose of language — the purpose of code, I mean.

When I was a teacher, I worked with very young children
who struggled to communicate with other people, for various
reasons. It wasn’t that these children necessarily struggled
with language. In fact, some of them were hugely competent
with language and its syntax. They struggled with communi-
cation in a more general sense, which can sometimes involve
no syntax or language at all. It can mean “prodding someone”,

“looking at someone”, or simply “tugging on their hand” to
pull them along.
The first step that we always tried to get across to these

young children was, “look at all the good things you can

get from interacting with someone”, and we used a lot of
biscuits.

Most children love biscuits, right?

DAVE: Cookies.

LU:And if you can tell them, “look, you can prod me, point

at a biscuit, and I will give you a biscuit”, then you
can show them the purpose of communication. And in some
way there’s very little syntax or structure to learn there.

For the next step, we did this thing called PECS with some
of the children. It’s a Picture Exchange Communication Sys-
tem [9] where they can give me a little bit of card that has a
picture of a biscuit on, and I give them a biscuit in return. So
the key thing here is the code. This card is this executable
program. It says “give me a biscuit”.
The funny thing is, once a child realizes, “oh I can get

what I want from this” and “I can make people do things”
then they quickly become very motivated to learn how to
communicate more complicated things.

DAVE: That’s great. I do think you’re right. That example
gets to the heart of what bugs me about abstract language
discussions versus all-in natural code.

What matters is that a communication occurs, and that it
causes something to happen. It causes the world to become
better for the transmitter. If the act of transmitting code, by
holding up that picture card, actually leads to “yum yum” then
all the syntax and stuff can come later. I think it could really
help if we thought of programming languages starting from
no syntax, starting from just signals.

4.2 From Spatial Computing to Symbols

DAVE: A key aspect of what you said is that it relies on spa-
tial computing [e.g., 1, 24]. You said “point at the biscuit

and I will give you a biscuit”. That depends on being
physically close to the thing that you’re indexing because
you cannot say “biscuit” yet. You don’t know how to do
that, but when it’s close enough, you can just indicate that
thing right there. And that’s how semantics begins.

Then going to the cards is great as a next step because that
is an example of a pointer dereference. You have a symbol
that, physically, is just some ink on paper, and yet it can refer
to a biscuit, and program someone to bring it to you, even if
it’s in another room, out of sight.

LU: We talked about it as “symbols”. That’s the terminology
we used in that field of education, and it’s the terminology I
use now when I talk about coding. That symbol could be the
child pulling on your coat, or a particular made-up sound,
as long as you know that it means “biscuit”.



Dialogues on Natural Code Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

DAVE: Right right, it could be anything. All that matters is
that there’s a shared understanding. It’s a little specific API.

4.3 “Natural Code” as a Symbol

LU:When we saw children make a jump to verbal language,
it was often when those first symbols just became more in-
convenient. Getting out the biscuit card from your little pack
of cards becomes a chore. Then you realize that it’s much
quicker and more effective to just say the word, “biscuit”.

And now I see that happening with me and you too. Some-
times, I want to refer to a concept that we’ve previously
discussed, but in a much more concise way, and we don’t
have a word or symbol for that concept yet, so we keep hav-
ing to go through it in its entirety again and again. I mean, we
can edit that out in the essay, but it’s very time-consuming
for us right here, right now.
So the solution, of course, is to make a symbol that can

serve as an abstraction. We need a word that we can deref-
erence to get a whole concept. And that’s what the term
“natural code” can be. It can refer to this shared understand-
ing that we’re building.
DAVE: I see. So now, now you’re at a meta level.
LU: “Natural code” is a symbol. It’s a namespace. It’s an API
that we can use to make our communication more effective.
But it only works if we both understand what it means, so
that it’s a compatible format for us both to use. That’s exactly
what we’re doing in these dialogues — we’re developing a
shared language — we’re developing our shared codebase.

5 The SelfImage API
LU: So, Dave: What is the SelfImage API? I know from your
video [4] that it has four processes, but what does it mean?
DAVE: Fields like philosophy and religion and science offer
us language to talk about what kind of machines we all are.
Like, “I think therefore I am”, or “I am a collection of

neurons”.
LU:Or “We are made up of needs and wants and motivations”,
or whatever.
DAVE: Right. All of these languages contain some germ of
truth, but none of them are going to be wholly sufficient to
answer all of the variety of questions that we might want to
ask. So what we need to do is choose multiple approaches —
multiple languages. I think of them as “APIs”. They’re clearly
not perfect, and don’t cover everything, but they emphasize
certain parts, and make it easier to express some concepts
versus others.

So the SelfImage (see Fig. 2) is such an API. It depicts us
as arrangements of four computational processes:

1. Input: Handling influences from our surroundings,
2. Output: Performing work on our surroundings,
3. Sequence: Changing internal states over time, and
4. Judge: Assessing situational desirability.

If we’re interested in howwe understand the world around
us, we’ll focus on the input process. If we want a deeper
understanding of how we actually create and do things in
the world, we’ll unpack the output process, and so on.

The SelfImage is a really basic framework to see ourselves
through a computational lens. It’s a starting point.

5.1 API Design

LU: To me, the SelfImage API seems no different than a
psychological model that aims to describe how people be-
have. It reminds me of something like Maslow’s hierarchy
of needs [15], or operant conditioning [21], even.
DAVE: Ah, okay. What I’m suggesting is that, by taking
the computational metaphor, the SelfImage API can simul-
taneously describe both people and other programmable
machinery. That’s one difference.
And secondly, I’m claiming that the SelfImage API leads

more directly to implementability than a psychological de-
scription, because it uses the language of computation.
LU: So it’s not solely a descriptive model?
DAVE: Right. It can be a blueprint. It can be a recipe for how
to build machinery.
LU: Okay, it seems more like a design challenge — you want
to make an API that’s useful, regardless of how truthful it is
as a description.
DAVE: A scientific theory succeeds when it gives us an
unexpected truth. But that’s not the goal of an API in software
design. We want an API to be as unsurprising as possible.
We want to adhere to the law of least astonishment. [22]

Ideally, an API should not teach us anything new. The
goal of an API is to be obvious, and that’s what we can judge
it on — how universally obvious it is.
LU: I think I get it. It’s more like user experience design, in
a way. It’s a communication tool that lets us talk about the
world in a certain way — under a computational lens.

It should be as easy and straightforward to use as possible.

5.2 Shared Code

LU: Sometimes, when I’m developing computer code, I use
some tooling to help me, like Google Chrome’s DevTools, to
see what code is being executed, where it crashes, and so on.

But sometimes the tooling doesn’t show me enough help-
ful information, so I drawmy own visualizations of my code’s
execution — on a piece of paper, or a whiteboard, or a virtual
whiteboard like tldraw [23]. It could be a drawing of a state
machine, or a flowchart, or a memory layout. Regardless,
my drawing is a highly simplified version of what’s actually
happening in execution.
On top of that, my drawings become a shared language

that I can use to communicate with my colleagues. They can
look at my visualization and understand what I’m trying to
achieve. And if they have a suggestion for how to improve it,



Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Lu Wilson and David H. Ackley

Figure 2. The SelfImage API datasheet cover. To propagate successfully, even the most complex and subtle ideas must also
have small and memorable representations. If the idea creators fail to provide them, the idea consumers — if there are any —
must and will. Here, as an example, the SelfImage API begins with four simple words and a single shape.

they can communicate with me via the shared model. They
can draw on it, or edit it, or make their own version. It’s a
shared API we have between us.
To me, the SelfImage API feels like a similar kind of vi-

sualization. It’s not necessarily an accurate representation
of what’s going on inside my machine, but it’s a helpful ab-
straction that allows me to think through how my code is
executing, and how it could be improved.
DAVE: Yes, absolutely. The diagram is still much simpler
than the code and the machine it’s depicting, but it has value
in the moment. All we really need is to be confident that the
diagram is implementable.
When we derive a diagram from running code, we know

the diagram is implementable, because “here’s an imple-

mentation”. But if we add another arrow, say, the diagram
may no longer be implementable in the existing code. And
that tension, between simplified abstractions and actual im-
plementations, is what code development is all about.

If there’s a small set of abstract but widely implementable
processes with a lot of descriptive power, we should give
them a name to go by. That’s all the SelfImage API is.

6 Developing Natural Code
LU: Okay, imagine I’ve bought into the “natural code” idea,
and now I want to put it into practice — I want to start devel-
oping “natural code”. I want to improve the shared codebase!

Well, that feels really hard to do, because the concept is so
unsatisfyingly vague. How do I actually develop “natural
code”? Can you spell it out for me?
DAVE: I’ve been accused of being too vague before, and to
some degree I will plead guilty to that. But also, that’s just
the nature of APIs. The whole idea is that they’re abstract. I
mean, like a linked list is utterly vague about what’s inside
it. It’s utterly vague about exactly how many items you’re
going to need in the list, and so on. That’s by design. That’s
the point. It’s compatible with a wide range of uses, and the
SelfImage API is the same.
LU: Right, I see. And I saw in your video [4] how you’re
using the SelfImage API as a model for some example com-
putations, like “The Daydreamer” (see Fig. 3). But, in all
honesty, it feels like you could put anything in there.
DAVE: I hope that you could model anything — at least, any
implementable machine — with the SelfImage API, because
it’s deliberately trying to be as general as possible. Like, if
either of us think some example is not implementable, then
we should focus on that until we reach some shared notion
of an implementation strategy. Or maybe we discover there’s
some deeper bug with the API, and we need to back up.
LU: Okay so perhaps the vagueness of natural code is actu-
ally a feature?
DAVE: Yeah it’s Vagueness As A Service.



Dialogues on Natural Code Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

Figure 3. Sample applications page from the SelfImage API datasheet. Though informal, rough, and categorical, such simple
visual representations of SelfImage configurations —“grips” — may offer insights. For example, highlighting the similarities
between “Parametric Search” and “Depressed” might possibly be useful to an organism stuck in the latter grip.

6.1 Traditional Programming

LU: And what about this? One reviewer felt that “natural
code” doesn’t help with traditional programming — so it’s
maybe off-topic for Onward! Essays.
DAVE: It’s true we didn’t stress implications for traditional
programming, but I think there are some basic connections.
LU: And what are they?
DAVE: One way natural code informs traditional program-
ming is by shouting “Snap out of it! It’s time to get

over hardware determinism!” And abandoning hardware de-
terminism drives a focus on robust-first programming [6].
LU: Yes. I guess, with the MFM architecture [7], and T2 Tile
Project [3], you’ve made a case for a new, non-deterministic
kind of computer architecture. But that involves switching
to a whole new hardware stack. Does robust-first speak at
all to people programming on traditional hardware?
DAVE:Well, yeah, if the computing model is big CPU and
big flat RAM and hardware determinism, serious robustness
is scarcely an option. But still, natural code can at least offer
support for some programming concepts over others.
LU: Like what?
DAVE:Well, here’s three:

1. Event-driven programming: Prefer dialogue over mono-
logue — shorter code sequences interacting.

2. Self-stabilizing code: First be robust, then as correct as
possible, then as efficient as necessary.

3. Minimize state: Prefer recomputing over cachingwhere
possible; let the world be its own representation.

And maybe overall, natural code says be wary of people
advocating correctness and efficiency only. I think traditional
programming needs to hear that!

6.2 Debugging Natural Code

LU: I’m thinking back to when I said that “programming other

people” seems cold and —
DAVE: And how do you feel now?
LU: Well, I still think it seems cold. And I can see that
“coldness” blocking some people.

But I see you’re not saying it for a cold-hearted reason.
Instead, it’s a way of thinking deeply about our communica-
tions, that will allow us to try to figure out how to become
more compatible with each other, right?
My natural code is going out and yours is coming back.

And maybe we’re not hearing each other. Maybe we’re not
on the same page. Maybe we’re struggling on the same thing.
Maybe we’re both trying to improve the world in the same
way, but we’re not able to work together. We’re not able to
understand each other in some way.
And you have this idea of “Right, let’s look at this

in natural code terms”. “Let’s try to look at where our



Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Lu Wilson and David H. Ackley

code is incompatible.” “Let’s try to find a shared code

that we both understand.” “Let’s try to transpile the

code between us.”
DAVE: In the secret fortress of solitude in our heads, we
are all trying to get what we want, but there’s this huge veil
of silence over that fact. We don’t quite admit it, because it
doesn’t sound good. It sounds selfish, and so people ask, “Do
you do good because you’re actually trying to do good

or just because you’re selfishly trying to make people

give you the results of being good?” Well, so that is an
example of something that can be cleared up by taking this
point of view of code transmissions.

We are coders. We’re all trying to get what we want. And
because we’re alive, what we want tends to be stuff we think
will help us persist and survive in the world. And cookies
are a proxy for survival because we need energy to persist
and sweets are a proxy for energy. So we think we’re helping
ourselves persist, and it’s “yes, yes, cookie, yes” from the
hardware. Then we end up looking like me.
LU: And I think that most of us, as adults, we pick that up
implicitly, right?We learn that we can influence other people
by deploying code, verbally or otherwise. Like saying “Hey,
duck!” to someone and they duck.

But some of these children I worked with — for one reason
or another, they struggled to pick this lesson up implicitly, so
they had to explicitly learn it. And they often ended up un-
derstanding it better than many of their peers, who did learn
it implicitly. These children gained mastery over communi-
cation by debugging it when it wasn’t serving their interests
as well as it could have. Perhaps more people could benefit
from this kind of explicit debugging of their communication
— of their code transmission.
DAVE: Right!We can often see implementationsmost clearly
when they break down. The children’s code wasn’t executing
the way they wanted, and that’s frustrating, so you worked
together to debug that. You made super-accessible communi-
cation channels, so step by step the kids could start choosing
to transmit code that makes their world better.

DAVE: Once we admit, or once we just decide, that language
is code, then the natural code framework says it’s all about
acts of code transmission. Some transmission through space
from A to B at time C: What code shipped? Did that trans-
mission happen for a good reason? Would we rather widen
that channel, or maybe block it? All such questions are fair
discussion topics among “natural coders.”

The overall goal is to debug the great machine and improve
its codebase. Close up, between us, the purpose is to find a
win-win, so I understand what your language means in my
terms and vice versa — so we can share code effectively and
our collective distributed machine works better. And I think,
if we choose to be resolutely explicit about that — that we

are coders, we are developers, and we’re trying to debug the
machine — we might all be happier and more productive,
and our world more robust and sustainable.

6.3 Buggy Code

DAVE: But unfortunately there are also grifters, who deliber-
ately and knowingly ship buggy code, where the transmitted
narrative is a trick to cover theft, or corruption, or other evil.
LU: People sowing division, spreading misinformation —
DAVE: Even good people can ship bad code in moments
of weakness. They know in their hearts that the code isn’t
exactly right, and that its bugs benefit the transmitter. In
tiny ways at least, it’s like nobody is completely without
sin, so typically all remain silent. And the result is that good
people’s petty hypocrisies enable other’s great crimes.
LU: Some bugs are bigger than others.

LU: One of the reviewers expressed concern that natural
code can be misused.
DAVE: For sure. Natural code gets misused a lot.
LU: Yes, it’s happening already, all around us, whether we
explicitly acknowledge it as natural code or not, harmful
natural code is being shipped and —
DAVE: And we’d be better off acknowledging that —
LU: Because then we can be more explicit about naming it
as such, and calling it out, and then —
DAVE: And then we can start talking like developers, and
get down to debugging our shared natural codebase.

7 Owning Our Natural Codebase
DAVE: Okay another run at a summary: There are many
many ways to describe things. On the one hand, they are
not all equally good for all purposes, but on the other hand,
there’s no one language that’s “uniquely most true” either.
You talk differently to your grandma than to a colleague or
friend, because different code receivers understand differ-
ently, and have different shared dictionaries between you.

So the claim has two parts. First: We have to make choices
about how to describe and understand ourselves and the
world. We cannot delegate those choices, even if we really
want to — not to other people, not to the universe itself. And
second: One choice should always be that we are coders.

It’s about all our code transmissions, natural and artificial.
Is it all a metaphor? Sure, if you need it to be, but I’ll still
claim it’s a simple and powerful basis for understanding and
improving our shared computation.
So natural code will be one of many ways of describing

and building things. It won’t erase art, or philosophy, or any
of those things. But it will always be available in addition.
“Let’s consider this in terms of natural code.”



Dialogues on Natural Code Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

LU:Over the last months we have attempted to own the ideas
of natural code — struggling towards shared understanding
where previously there was none. My hope is that other
people will see our example and become inspired to do the
same, though we cannot know for sure if that will happen.
DAVE: Indeed. We can only do what we can, and it won’t
all be easy. I hope that, once they see themselves as natural
coders, people of good faith everywhere will work for a better
shared codebase. I do have hope.

LU:Tome, natural code is about building bridges, and getting
people to work together — to name and call out the bad code,
while celebrating the shipping of better code.

To do this, wemay as well talk in terms of natural code.We
may as well talk about developing our APIs, and debugging
our difficulties, and improving our codebase. And I do believe
that more and more people will join us on this, and become
more deliberate about being natural coders.
DAVE: And this is just a beginning.
LU: “Step by step”!
DAVE: Step by step.

References
[1] Harold Abelson, Don Allen, Daniel Coore, Chris Hanson, George

Homsy, Thomas F. Knight, Jr., Radhika Nagpal, Erik Rauch, Gerald Jay
Sussman, and Ron Weiss. 2000. Amorphous Computing. Commun.
ACM 43, 5 (May 2000), 74–82. https://doi.org/10.1145/332833.332842

[2] Dave Ackley. 2004. Machines. Retrieved April 22, 2024 from https:
//livingcomputation.com/lc/d/ae/machine.html

[3] Dave Ackley. 2015. Living Computation: Robust-first programming
in ULAM. Video submission (accepted) to the Future Programming
Workshop at SPLASH 2015, Pittsburgh. Video retrieved July 2024 from
https://www.youtube.com/watch?v=I4flQ8XdvJM.

[4] Dave Ackley. 2021. We Are Coders - HSA101.2: Hypersubspaces. Video.
Retrieved April 22, 2024 from https://www.youtube.com/watch?v=
ScYgBxLupAs

[5] Dave Ackley. 2024. Thank you Dan. Retrieved July 17, 2024
from https://livingcomputation.com/lc/morning/202404201125-dan-
dennett.html Also appeared in the 16th The Artificial Life Newsletter,
at https://alife-newsletter.github.io/Newsletter/edition_016.html.

[6] David H Ackley. 2013. Beyond efficiency. Commun. ACM 56, 10 (2013),
38–40.

[7] David H. Ackley, Daniel C. Cannon, and Lance R. Williams. 2013. A
Movable Architecture for Robust Spatial Computing. Comput. J. 56,
12 (2013), 1450–1468. http://dx.doi.org/10.1093/comjnl/bxs129

[8] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. 1977.
A Pattern Language: Towns, Buildings, Construction. Oxford University
Press.

[9] Andrew S. Bondy and Lori A. Frost. 1994. The Picture Exchange
Communication System. Focus on Autistic Behavior 9, 3 (1994), 1–19.

[10] Tristan Bove. 2021. Techno-Optimism: Why Money and Technology
Won’t Save Us. (June 2021). Retrieved July 10, 2024 from https:
//earth.org/techno-optimism/

[11] Noam Chomsky. 1956. Three models for the description of language.
IRE Trans. Inf. Theory 2, 3 (1956), 113–124. http://dblp.uni-trier.de/db/
journals/tit/tit2n.html#Chomsky56

[12] Daniel C. Dennett. 1987. The Intentional Stance. The MIT Press,
Cambridge, MA.

[13] Christophe Dupre and Rafael Yuste. 2017. Non-overlapping Neural
Networks in Hydra vulgaris. Current Biology 27, 8 (24 Apr 2017),
1085–1097. https://doi.org/10.1016/j.cub.2017.02.049

[14] Erich Gamma, Richard Helm, Ralph Johnson, and John M.
Vlissides. 1994. Design Patterns: Elements of Reusable Object-
Oriented Software (1 ed.). Addison-Wesley Professional.
http://www.amazon.com/Design-Patterns-Elements-Reusable-
Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1

[15] A. H. Maslow. 1943. A theory of human motivation. Psychological
Review 50, 4 (1943), 370–396. https://doi.org/10.1037/h0054346

[16] SteveMuir. 2004. The SevenDeadly Sins of Distributed Systems. In First
Workshop on Real, Large Distributed Systems (WORLDS 04). USENIX
Association, San Francisco, CA. https://www.usenix.org/conference/
worlds-04/seven-deadly-sins-distributed-systems

[17] Jakob Nielsen. 2024. Accessibility Has Failed: Try Generative UI =
Individualized UX. (February 2024). Retrieved July 10, 2024 from
https://jakobnielsenphd.substack.com/p/accessibility-generative-ui

[18] Markus Oberlehner. 2020. Retry Failed API Requests with JavaScript. Re-
trieved April 22, 2024 from https://markus.oberlehner.net/blog/retry-
failed-api-requests-with-javascript/

[19] Arnon Rotem-Gal-Oz. 2008. Fallacies of Distributed Computing Ex-
plained. Doctor Dobbs Journal (01 2008).

[20] Carlos J Sanchez, Chen-Wei Chiu, Yan Zhou, Jorge M González,
S Bradleigh Vinson, and Hong Liang. 2015. Locomotion control of
hybrid cockroach robots. J R Soc Interface 12, 105 (April 2015).

[21] B. F. Skinner. 1938. The behavior of organisms: an experimental analysis.
Appleton-Century, Oxford, England.

[22] R. N. Southworth. 1967. PL/I bulletin no. 5. SIGPLAN Not. 2, 12 (Dec
1967), 1–71. https://doi.org/10.1145/1139502.1139504

[23] tldraw Inc. 2022. Virtual whiteboard. Retrieved April 22, 2024 from
https://tldraw.com/

[24] Franco Zambonelli and Marco Mamei. 2005. Spatial Computing: An
Emerging Paradigm for Autonomic Computing and Communication.
In Autonomic Communication, Michael Smirnov (Ed.). Lecture Notes
in Computer Science, Vol. 3457. Springer Berlin / Heidelberg, 227–228.
http://dx.doi.org/10.1007/11520184_4

[25] J. F. Ziegler and W. A. Lanford. 1979. Effect of Cosmic Rays on
Computer Memories. Science 206, 4420 (1979), 776–788. https:
//doi.org/10.1126/science.206.4420.776

Received 2024-04-25; accepted 2024-08-08

https://doi.org/10.1145/332833.332842
https://livingcomputation.com/lc/d/ae/machine.html
https://livingcomputation.com/lc/d/ae/machine.html
https://www.youtube.com/watch?v=I4flQ8XdvJM
https://www.youtube.com/watch?v=ScYgBxLupAs
https://www.youtube.com/watch?v=ScYgBxLupAs
https://livingcomputation.com/lc/morning/202404201125-dan-dennett.html
https://livingcomputation.com/lc/morning/202404201125-dan-dennett.html
https://alife-newsletter.github.io/Newsletter/edition_016.html
http://dx.doi.org/10.1093/comjnl/bxs129
https://earth.org/techno-optimism/
https://earth.org/techno-optimism/
http://dblp.uni-trier.de/db/journals/tit/tit2n.html#Chomsky56
http://dblp.uni-trier.de/db/journals/tit/tit2n.html#Chomsky56
https://doi.org/10.1016/j.cub.2017.02.049
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
https://doi.org/10.1037/h0054346
https://www.usenix.org/conference/worlds-04/seven-deadly-sins-distributed-systems
https://www.usenix.org/conference/worlds-04/seven-deadly-sins-distributed-systems
https://jakobnielsenphd.substack.com/p/accessibility-generative-ui
https://markus.oberlehner.net/blog/retry-failed-api-requests-with-javascript/
https://markus.oberlehner.net/blog/retry-failed-api-requests-with-javascript/
https://doi.org/10.1145/1139502.1139504
https://tldraw.com/
http://dx.doi.org/10.1007/11520184_4
https://doi.org/10.1126/science.206.4420.776
https://doi.org/10.1126/science.206.4420.776

	Abstract
	1 Being Machinery
	1.1 Building Machinery
	1.2 Contracting Machinery
	1.3 Human Hardware
	1.4 Coldness and Evil

	2 Beyond Determinism
	3 Prior ``Art''
	3.1 Historical Traditions
	3.2 Implementability
	3.3 Related Work
	3.4 Blending Fields

	4 The Nature of Natural Code
	4.1 Starting From Signals
	4.2 From Spatial Computing to Symbols
	4.3 ``Natural Code'' as a Symbol

	5 The SelfImage API
	5.1 API Design
	5.2 Shared Code

	6 Developing Natural Code
	6.1 Traditional Programming
	6.2 Debugging Natural Code
	6.3 Buggy Code

	7 Owning Our Natural Codebase
	References

